menu

lunes, 27 de mayo de 2019

TEOREMA DE BAYES

   TEOREMA DE BAYES

Un letrero de neón, mostrando el enunciado del teorema de Bayes
El teorema de Bayes, en la teoría de la probabilidad, es una proposición planteada por el matemático inglés Thomas Bayes (1702-1761)1​ y publicada póstumamente en 1763,2​ que expresa la probabilidad condicional de un evento aleatorio A dado B en términos de la distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad marginal de sólo A.
En términos más generales y menos matemáticos, el teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir, por ejemplo, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.
Sea  un conjunto de sucesos mutuamente excluyentes y exhaustivos, y tales que la probabilidad de cada uno de ellos es distinta de cero (0). Sea B un suceso cualquiera del que se conocen las probabilidades condicionales . Entonces, la probabilidad  viene dada por la expresión:
donde:
  •  son las probabilidades a priori,
  •  es la probabilidad de  en la hipótesis ,
  •  son las probabilidades a posteriori.

Thomas Bayes (1763)

Fórmula de Bayes


La visualización del teorema de Bayes por la superposición de dos árboles de decisión.
Con base en la definición de Probabilidad condicionada se obtiene la Fórmula de Bayes, también conocida como la Regla de Bayes:
Esta fórmula nos permite calcular la probabilidad condicional  de cualquiera de los eventos , dado . La fórmula  "ha originado muchas especulaciones filosóficas y controversias".3

Aplicaciones


El teorema de Bayes es válido en todas las aplicaciones de la teoría de la probabilidad. Sin embargo, hay una controversia sobre el tipo de probabilidades que emplea. En esencia, los seguidores de la estadística tradicional sólo admiten probabilidades basadas en experimentos repetibles y que tengan una confirmación empírica mientras que los llamados estadísticos bayesianos permiten probabilidades subjetivas. El teorema puede servir entonces para indicar cómo debemos modificar nuestras probabilidades subjetivas cuando recibimos información adicional de un experimento. La estadística bayesiana está demostrando su utilidad en ciertas estimaciones basadas en el conocimiento subjetivo a priori y el hecho de permitir revisar esas estimaciones en función de la evidencia empírica es lo que está abriendo nuevas formas de hacer conocimiento. Una aplicación de esto son los clasificadores bayesianos que son frecuentemente usados en implementaciones de filtros de correo basura o spam, que se adaptan con el uso. Otra aplicación se encuentra en la fusión de datos, combinando información expresada en términos de densidad de probabilidad proveniente de distintos sensores.
Como observación, se obtiene la siguiente formula  y su demostración resulta trivial.
Como aplicaciones puntuales:
  1. El diagnóstico de cáncer.
  2. Evaluación de probabilidades durante el desarrollo de un juego de bridge por Dan F. Waugh y Frederick V. Waugh.
  3. Probabilidades a priori y a posteriori.
  4. Un uso controvertido en la Ley de sucesión de Laplace.3
  5. En el testeo de hipótesis en Ciencia Política cuando se usa metodología process tracing.


No hay comentarios:

Publicar un comentario